History of Biometries

SN	Year	Scientist	Event
1	1916	East	Demonstrated that polygenic characteristics were perfectly in agreement with Mendelian segregation
2	1918	R A Fisher	Divided VG = VA + VD + VI
3	1928	P C Mohalonobis	Developed the concept of D2 Statistics & used it in Anthropometry & Psychometry
4	1935	Sewell Wright	Suggested partitioning of Genetic Variance (V_G) = AGA (V_A) + NAGA (V_D + V_I)
5	1936	H F Smith	Developed Discriminant Function technique & Used discriminant function for plant selection
6	1936	H F Smith	Classical Selection Index
7	1942	Sprague & Tatum	Proposed combining abilty as a measure of gene action
8	1943	L N Hazel	Used Selection Index (Discriminant Function) for Animal Selection
9	1943	K Mather	Coined "Polygene"
10	1947	Yates	Coined "Diallele"
11	1949	K Mather	Divided V_P into Heritable fixed (V_A) + Heritable Non-fixed $(V_D + V_I)$ + Non-Heritable Non-fixed (V_E)

12	1952	C R Rao	Application of D ² statistics to assess genetic diversity in plant breeding
13	1954	Hayman	Developed graphical approach for diallele analysis
14	1954	Jinks; Hayman	Developed diallele cross analysis in self polinating species
15	1955	Mather & Hayman	Partitioned $V_I = V_{I(AA)} + V_{I(AD)} + V_{I(DD)}$
16	1956	Griffing	Numerical approach for Diallele Analysis
17	1956	Griffing	Outlined 4 methods & 2 methods for combining ability analysis for diallele cross
18	1957	Kempthorne	Developed the concept for line x tester analysis
			Developed the concept of partial diallele analysis (Each Parent is mated with
19	1957	Kempthorne	some other parent)
20	1957	Anderson	Developed the concept of Metroglyph Analysis (A semigraphic method of studying variability in large number of germplasm or segregating population)
21	1957	Hanson & Jonson	General Selection Index
22	1959	Dewey & Lu	First used the path-coefficient analysis for plant selection in crested wheat grass
23	1959	Kempthorne & Nordskorg	Restricted Selection Index
24	1962	Rawlings & Cokerham	Concept of triallele (1962a) & quadriple allele (1962b) was developed
25	1963	Comstock & Moll	Classified Environment into micro & macro environment
26	1966	Eberharti & Russel	Developed the concept of stability analysis

27	1968	Kearsay & Jinks	Developed the concept of Tripple cross analysis
28		Francis Galton	Regression
29		Karl Rearson	Standard Dev; Variation; Chi-Square Test & Simple Correlation
30		R A Fisher	ANOVA
31		Johannsen	Partitioned $V_P = V_G + V_E$
		ritte.//biois	Partitioned V _P = V _G + V _E FOUNDATION FOR THE PARTITION FOR T
			Page 3 of 3